If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-6t^2+120t=0
a = -6; b = 120; c = 0;
Δ = b2-4ac
Δ = 1202-4·(-6)·0
Δ = 14400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{14400}=120$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(120)-120}{2*-6}=\frac{-240}{-12} =+20 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(120)+120}{2*-6}=\frac{0}{-12} =0 $
| 4x+15=10-3x | | 16y^-3=2y^-6 | | 1.5/x=x/12 | | 10x-2=122 | | Y=3t+6/2 | | X/1.5=12/x | | 3x+5x+20=84 | | 1/3(9b+5)=-9 | | 35/3x+x=35 | | 3y+y+9,52=10,4 | | 11x-3=63 | | 3r+4=30/r | | 11x+10=65 | | 6-3x=18+2x | | 11x+4=-62 | | 5y=40y^-1/2 | | 26-6x4= | | 2x²+8x=0 | | -2x²+8x=0 | | 7x+15=7x-6 | | X(x+24)=350-10 | | 2(3n-5)=4n-1 | | t+8=7 | | 2(-3+x)=x+15 | | X+1/2x=11-1/3x | | 3b+7=11 | | -3=2*p | | (4-k)=9 | | (4-k)^2=9 | | 2^n=128 | | X²-4x+2x+0=0 | | 3x+7x=5+6 |